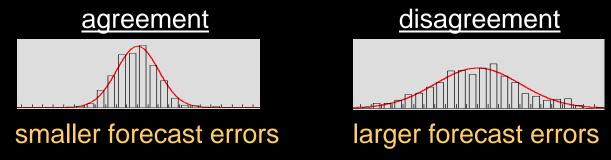
Part II:

Redefining the Ensemble Spread-Skill Relationship from a Probabilistic Perspective

Traditional Ensemble Spread-Skill Relationship

Based on the premise that ensemble spread should provide a forecast of forecast error.



- Often characterized by the linear relationship between ensemble spread and forecast error -- the "spread-error correlation"
- Assumes:
 - A linear dependency between ensemble spread and forecast error
 - An end user that has a continuous sensitivity to forecast error

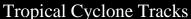
The Real Deal

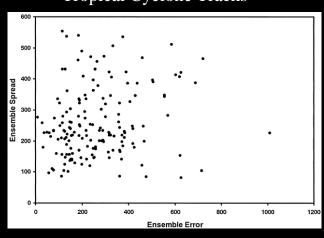
- In theory, for a perfect ensemble of infinite size...
 - The strength of the correlation between ensemble spread (σ) and the ensemble mean forecast error $(|e_{EM}|)$ is limited by the case-to-case spread variability (β) .

$$\rho^{2}(\boldsymbol{\sigma}, |\mathbf{e}_{EM}|) = \frac{2}{\pi} \frac{1 - \exp(-\beta^{2})}{1 - \frac{2}{\pi} \exp(-\beta^{2})}; \beta = std(\ln \boldsymbol{\sigma})$$
(Houtekamer, 1993)

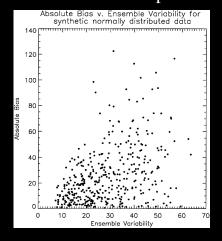
Even with infinite spread variability, spread and error are not perfectly correlated (ρ < 0.8).

Disappointing Results

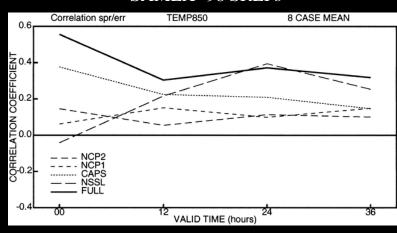




NCEP SREF Precipitation



SAMEX '98 SREFs



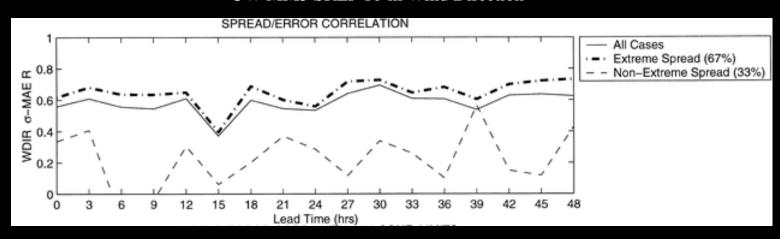
[c.f. Goerss 2000]

[c.f. Hamill and Colucci 1998]

- [c.f. Hou et al. 2001]
- Highly scattered relationships, thus low correlations
 - Often less than 0.4

Encouraging Results

UW MM5 SREF 10-m Wind Direction

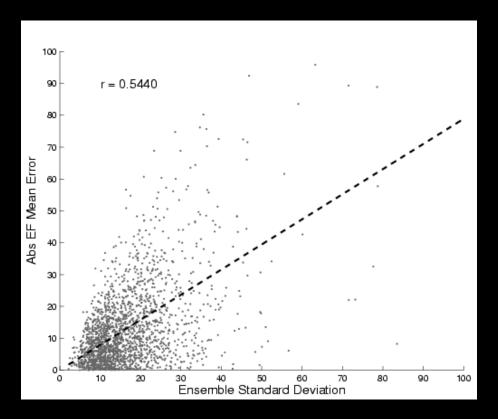


[c.f. Grimit and Mass 2002]

- More recent studies show that spatially-averaged spreaderror correlations can be as high as 0.6-0.7 (Grimit and Mass 2002, Stensrud and Yussouf 2003)
 - Potentially higher correlations can be achieved by considering only cases with extreme spread

An Inherently Deterministic Approach

- The expected value of the absolute forecast error is estimated in the regression.
- Therefore, only an unsigned, deterministic error forecast is generated.
- The skill associated with such predictions is very limited.

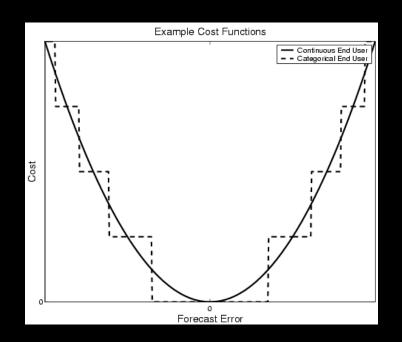


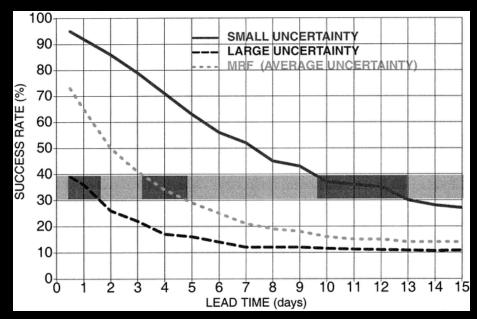
Idealized, statistical ensemble forecasts.

$$N = 2500$$

 $M = 50; \beta = 0.5$

A Categorical Approach





c.f. Toth et al. 2001

Some have concluded that categorical measures of forecast spread are more skillful predictors of forecast accuracy

(Toth et al. 2001, Ziehmann 2001)

- e.g. statistical entropy (ENT), mode population (MOD)
- **■** Requires that forecasts/verification be divided into predetermined bins
- Need idealized Houtekamer-type investigation to verify

A Simple Stochastic Model of Spread-Skill

An extension of the Houtekamer (1993) model of spread-skill

PURPOSES:

- 1) To establish <u>practical</u> limits of forecast error predictability that could be expected given ideal ensemble forecasts of finite size.
- 2) To address the <u>user-dependent</u> nature of forecast error estimation by employing a variety of spread and error metrics.
- 3) To extend forecast error prediction to a <u>probabilistic</u> framework.

A Simple Stochastic Model of Spread-Skill

1. Draw today's "forecast uncertainty" from a log-normal distribution (Houtekamer 1993 model).

In(
$$\sigma$$
) ~ N(In(σ_f), β^2)

2. Create synthetic ensemble forecasts by drawing M values from the "true" distribution.

$$F_i \sim N(Z, \sigma^2)$$
; $i = 1, 2, ..., M$

3. Draw the verifying observation from the same "true" distribution (statistical consistency).

$$V \sim N(Z, \sigma^2)$$

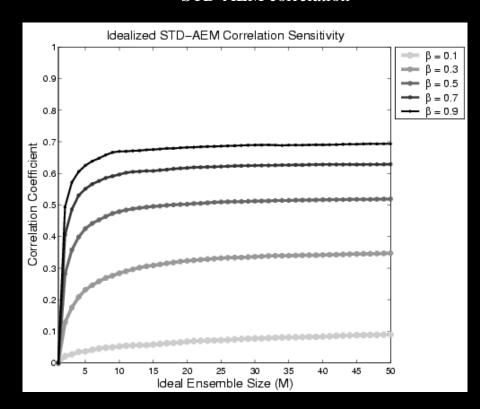
- Statistical ensemble forecasts at a single, arbitrary location
- 10⁴ realizations (cases)
- Assumed:
 - Gaussian statistics
 - statistically consistent (perfectly reliable) ensemble forecasts
- Varied:
 - temporal spread variability (β)
 - finite ensemble size (M)
 - spread and skill metrics (continuous and categorical)

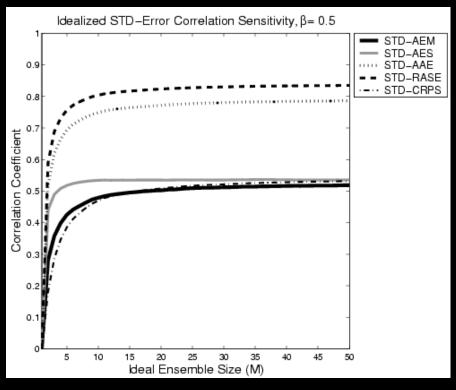
Idealized Spread-Error Correlations

N = 10000 $\beta = 0.5$

STD-AEM correlation

STD-error correlation





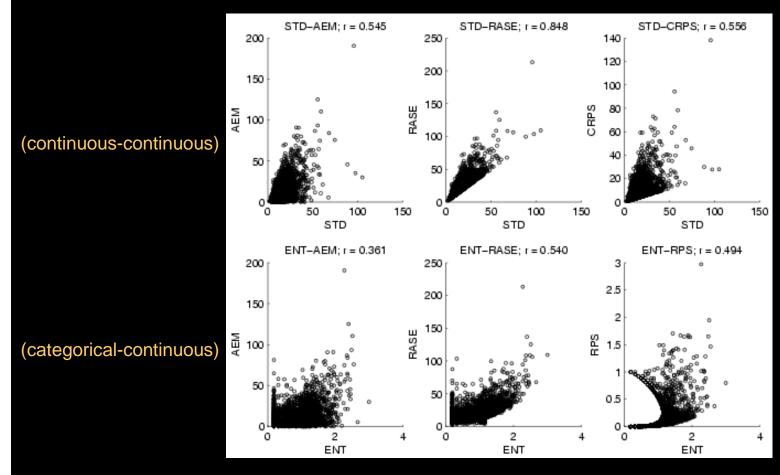
spread
STD = Standard Deviation

<u>error</u>
AEM = Absolute Error of the ensemble Mean

error
AES = Absolute Error of a Single ensemble member
AAE = ensemble-Average Absolute Error
RASE = square Root of ensemble-Average Squared Error
CRPS = Continuous Ranked Probability Score

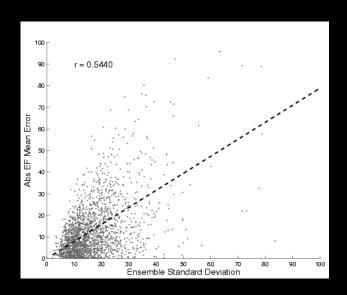
Idealized Spread-Error Scatter Diagrams N = 10000

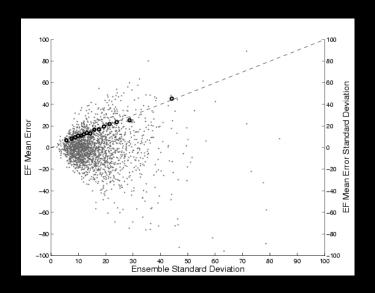
 $M = 50; \beta = 0.5$



(categorical-categorical)

A Probabilistic Perspective





- Connection between statistical consistency and the spreadskill relationship:
 - **Expect forecast variance and error variance to coincide**
 - "Skill" part of spread-skill relationship needs to be understood as the error variance, not the error itself
 - Thus, statistical consistency and spread-skill association are related concepts!

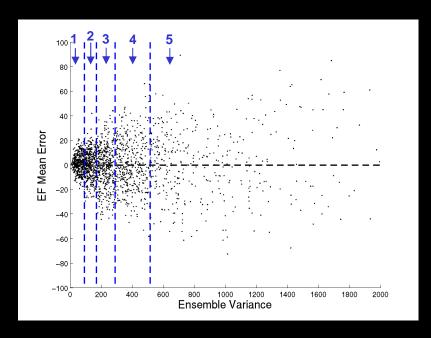
Conditional Error Climatology (CEC)

- Use historical errors, conditioned by spread category, as probabilistic forecast error predictions
 - Tradeoff between number of bins and number of samples
 - Variance-based conditional error climatology method:

VAR-CEC

Evaluate skill by crossvalidation, relative to the overall error climatology:

ERR-CLI



Idealized, statistical ensemble forecasts.

$$N = 2500$$

 $M = 50$; $\beta = 0.5$

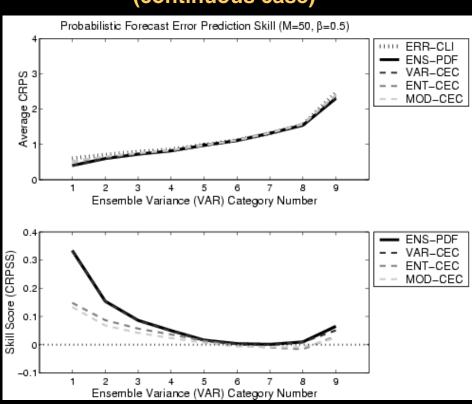
Idealized Probabilistic Error Forecast Skill

- May use the ensemble variance directly to get a probabilistic error forecast ENS-PDF
 - Most skillful approach if PDF is well-forecast

ENS-PDF CRPSS = 0.060 VAR-CEC CRPSS = 0.055 ENT-CEC CRPSS = 0.027 MOD-CEC CRPSS = 0.021

- VAR-CEC best among spreadbased CEC methods when using a continuous verification
- Predictability highest for extreme spread cases
 - Reinforces earlier results

(continuous case)



Idealized, statistical ensemble forecasts.

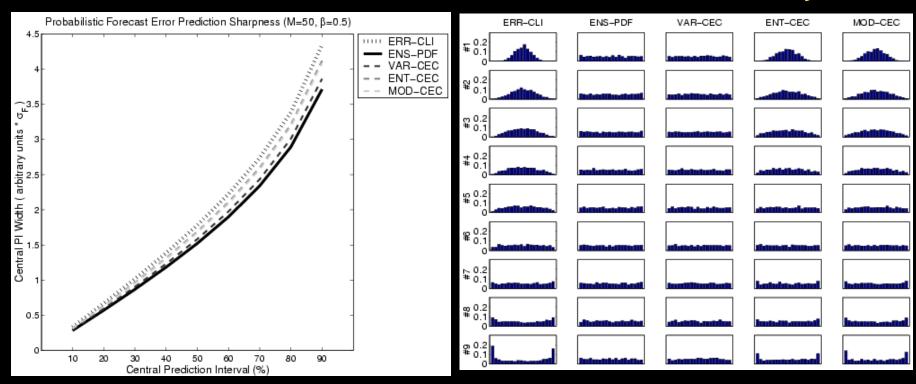
$$N = 10000$$

 $M = 50$; $\beta = 0.5$

Idealized Probabilistic Error Forecast Skill

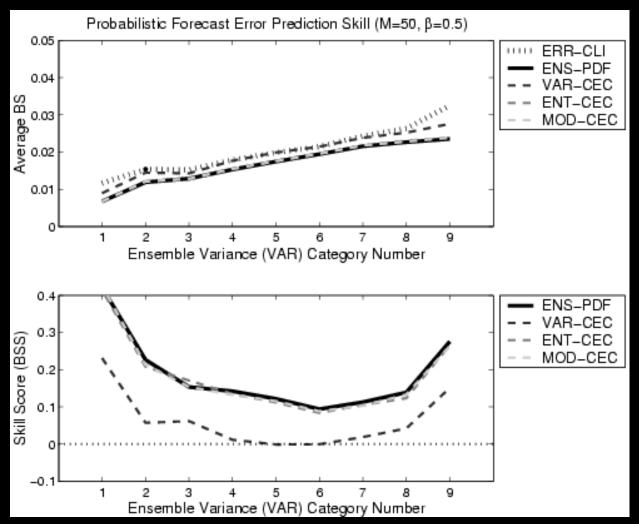
Sharpness

Calibration / Reliability



Idealized Probabilistic Error Forecast Skill

(categorical case)



Idealized, statistical ensemble forecasts.

N = 10000 $M = 50; \beta = 0.5$

UW SREF System Summary

	Name	# of Members	EF Type	Initial Conditions	Forecast Model(s)	Forecast Cycle	Domain
Homegrown	ACME	17	SMMA	8 Ind. Analyses, 1 Centroid, 8 Mirrors	"Standard" MM5	00Z	36km, 12km
	UWME	8	SMMA	Independent Analyses	"Standard" MM5	00Z	36km, 12km
	UWME+	8	РММА	ec ce	8 MM5 variations	00Z	36km, 12km
ported	PME	8	МММА	"	8 "native" large-scale	00Z, 12Z	36km

ACME: Analysis-Centroid Mirroring Ensemble

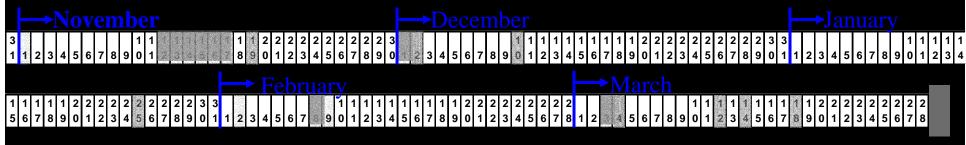
PME: Poor-Man's Ensemble

SMMA: Single-Model Multi-Analysis

PMMA: Perturbed-Model Multi-Analysis

MMMA: Multi-model Multi-Analysis

Mesoscale SREF and Verification Data



- Mesoscale SREF Data:
 - 129 cases (31 OCT 2002 28 MAR 2003)
 - 48h forecasts initialized at 0000 UTC
 - Parameters of Focus:
 - 12 km Domain Temperature at 2m (T₂), Wind Speed and Direction at 10m (WSPD₁₀, WDIR₁₀)
 - Short-term mean bias correction
 - Separately applied to: each ensemble member, location, forecast lead time
 - Training window chosen to be 14 days
- Verification Data:
 - 12 km Domain:

RUC20 analysis

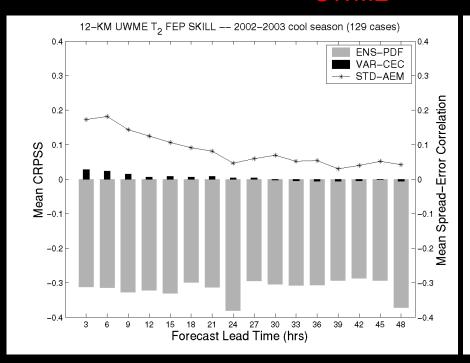
(NCEP 20 km mesoscale analysis)

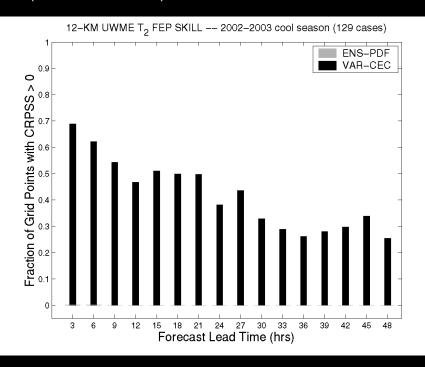
observations

Real Probabilistic Error Forecast Skill

UWME

(no bias correction)



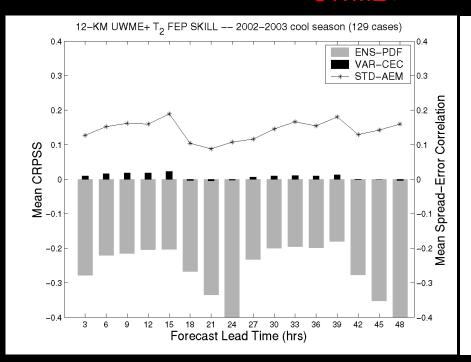


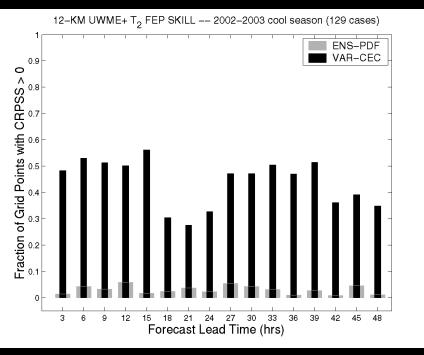
- VAR-CEC beats ENS-PDF handily
- VAR-CEC skill is generally small, but positive over 40-70% of the grid points through F24

Real Probabilistic Error Forecast Skill

UWME+

(no bias correction)



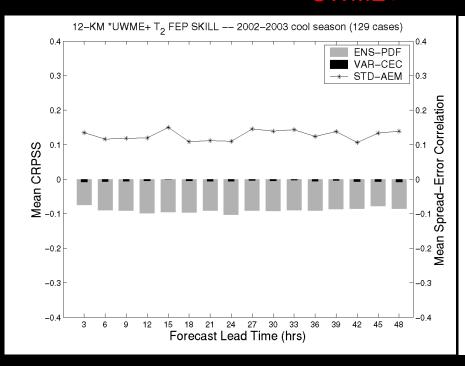


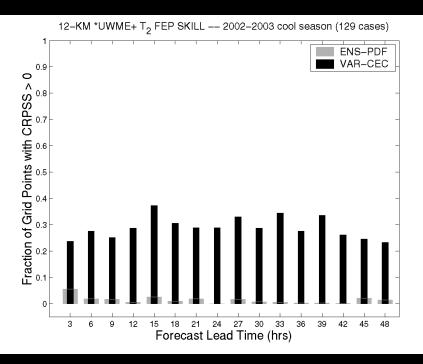
- UWME+ exhibits larger spread-error correlations
- Larger VAR-CEC skill (positive CRPSS into day-2 over 40-50% of the grid points)
- ENS-PDF improves (better raw PDF from UWME+)

Effect of Post-Processing

UWME+

(14-day grid point bias correction)





- Bias correction reduces spread-error correlations and effectiveness of the VAR-CEC approach
 - Temporal spread variability decreases
- ENS-PDF closes the gap in performance, but is still below the baseline

Conclusions

- Traditional spread-error correlation is <u>not</u> the best way to describe the spread-skill relationship <u>nor</u> does it provide an adequate framework for making skillful forecast error predictions.
 - Probabilistic forecast error prediction is a good alternative.
 - If the true PDF is not well forecast, a spread-based CEC method provides a viable methodology.
- Continuous (categorical) measures of ensemble spread are most appropriate as forecast error predictors for end users with a continuous (categorical) cost function.
- Forecast error predictability is higher for cases with extreme spread, especially low spread cases.
- A simple bias correction improves ensemble forecast skill, but may also degrade forecast error predictability via the spreadbased traditional and CEC methods.

QUESTIONS?

Contact Information

Eric P. Grimit, Ph.C.

University of Washington, Dept. of Atmospheric Sciences

Box 351640; Seattle, WA 98195

E-mail: epgrimit@atmos.washington.edu

Ph.: (206) 543-1456